蔡启功小心地打🗨🞊开了一个保险箱,献宝一样拿出来一片小小的金属叶片,叶片是银白色的,比巴掌略大,上面还打了很多的小孔,掂在手里很轻,但谭振华接过它的时候,手🁼却不由自主地在微微颤抖了一下,仿佛接过的是一件🞮🗞🜱无价的珍宝。
他知道,手里的这片小小的金属叶片,仅🗭🞺以制造它要付出的实际资源而言,数十倍于等重的黄金,而最重要的是,你就算肯出这么多的钱,在这个世界上,也不会有人卖给你。
因为这是一片高温涡轮叶片,确切地说,这是华夏研制的第二代单晶高🞎温合金涡轮叶片!
关心华夏航发事业的军迷朋友们应该都知道,航空发动机是一种设计和制造难度极高的精密机器,在这⛐🙥架机器中,最难做却也最重要的,是所谓的“热端三大件”,既燃烧室、涡轮、尾喷管,而涡轮,则是这三大件中最难也最贵的部件——因为上面安装了几百枚这种价🃙😊⛘超黄金的涡轮叶片。
一台售价数百万甚至过千万美元的完整的现代涡扇发动机,包含风扇叶片、压气机叶片、涡轮叶片在内的叶片就要占到其总造🄿价的30%,而在这30%中,工作在热端的涡轮叶片又要占到叶片总价值的60%,可见这东西的价值之高。
前文说过,华夏曾经在涡轮叶片这一单项零部件上在全球取得过短暂的领先——那是60年代,师昌旭带领着一队人马,在世界上第二个搞出了9孔成型高温铸造合金空心叶片,这一成果甚至领先航发领军企业罗﹒罗整整8年,并让率队前来华夏推🗳☃销的胡克爵士叹为观止。
要知道后来华夏引进的“斯贝”发动机都未能采用🀫这种技术,它用的还是实心高温定向凝固合金,加工这种叶片的技术也是西航发花了大力气才攻关成功的“无余量精锻”。
那么这种涡轮叶片的升级具体有什么🃊🖇🐡好处呢?
好处太大了!
用一个不算太精确的数据来说明吧——航空发动机的涡轮前温度每提高5☥🁞☥🁞0摄氏度,发动机的功率就能提高10%。
而众所周知,看一台航发性能强大与否、技👧术先进与否,最直观🎠💛的数据,就是看它的推重比,也就是能爆发出的推力和自身重量的🅬比值。
明白了吧?要想在不增加或者少增加发动机本身重量的条件下获得尽可能大的推🚫🖒力⚳,那最直接的办法就是提高发动机的涡轮前温度🅬。
就以同学们最熟悉的“斯贝MK202”为例,这台于60年代研制的发动机是典型的第二代喷气式航空发动机、第一代涡扇发动机,它采用的是实🖞📮🞊心高温定向凝固合金涡轮叶片,涡轮前温度为1300~1500KK🉣🉇🅐-273既为摄氏度,所以它的推重比勉强超过了5。
而在它的华夏升级版“秦岭”发动机中🙘,由于采用了一⛖🚙些新的技术,特别是换装了华夏国产的第一代单晶高温合金涡轮叶片DD3以及以粉末冶金技术重新设计制造的涡轮盘之后,涡轮前温度提高到了138🈐♈🆞0~1580K,发动机的推力也就被成功地提高了约10%,突破了10吨的门槛,推重比达到了5.7。
再看看米国人。
米帝在70年代首先搞出了第一代单晶高温合金气膜冷却空心涡轮叶片PWA1480,第一个采用这种叶片的是F100-PW-220发动机,使得发动机的涡轮前温度提高到了1680~1750K,推重比也一举突破了7,在改进后甚至能超过8,从这型发动机开始,米国研制的航发跨进了第三代。
之后,米国人和欧洲人先后在90年代至二十一世纪初搞定了第二代单晶高温合金复合冷却空心涡轮叶片,航空发动机的涡轮前温度也被提高到了1850~1980K,因此诞生了推重比高达9~10的航空发动机,米国人的成果就是装在F😉-22上的那部F119,而欧洲人的成果就是装在“台风”战斗机上的那部E🄝⚈J-200发动机,这两部发动机也是🀺🁺国际标准第四代航空发动机的代表产品。