“艾伦教授,很高兴见到您。”
加州大学的圣塔芭芭拉分校区中,科技博客的媒体记者⛝🛕🜎热情的和眼前的诺奖老人握了握手,打了个招呼。
老人笑着握了握手,点了点头示意道:“坐🎐吧,我的助手已经跟我说过了。”
浅聊了一下后,科技博客的媒体记者开口🟙🝠🌥道:“艾伦教授,关于最近arixv上很火的那篇有关于锂枝晶难题的论文您🉂🄢⚻看过了吗?听说那位徐教授研发出来了解决锂枝晶难题的方法?”
艾伦·黑🚠格点了点头,道:“已经看👜过了,是篇相当精彩的论文,目前我们正在🈢依据论文上的方法重复实验。”
记者有些惊讶的问道:“难道它是对的?”
艾伦·黑格教授摇🅒🆂🌭了摇头,道:“暂时🂵📈还不知道,在实验结果没有出来前,我也没法保证说它一定就能解决锂枝晶难题。”
“不过.....”
迟疑了一下,老人接着🕡🗮道:“从理论上来说,它极有🞊可能是对⛆😋的。”
“而且根据我的了解🝻🐖,目前已经有不少的高校或实验室复刻出⛆😋了这项成果,从初步的测试来看,这种人工sei薄膜能够在很大程度上抑制锂枝晶的生长。🚞🔜”
闻言,科技博客的媒体记者迅速问道:“那如果锂枝晶问题被解决了,它会给我们的生🖠📾☳活带来什么样的变化?⛢🜂”
艾伦教授沉吟🖀🏟了一下后缓慢的开口道:“锂枝晶🜭难题是锂电池中最大的一个,它🈢对锂电池的发展意义相当重大。”
“首先可以肯定的是,如果锂枝晶问题能得到解决,我们将得到容量更高的锂电池。🖙💾”
“毕竟锂🚠离子电池的容量主要取决于正、负极活性材料的质量和配🏝🛃比,而正负极材料又决定了电池的能量密度。”
“而无论是我们现在使用的锂离☨🁹子电池,还是全世界都在🐄☽🄸研发的锂硫电池,甚至是还在理论阶段锂空气电池,都绕不开锂枝晶生成的问题。🅷”
“举个很简单的🞠🕥例子,当前市面上流通的锂电池,电池的负极材🂴📁料主🅥🈭要有天然石墨材料、人造石墨材料、硅基等等。”
“而石墨的理论比容量只有372mah/🎐g,但如果将石墨更换🏝🛃成锂金属,其容量可以达到3860mah/g,整整提升了十倍多。”